cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158810 Coefficients of the differentiated row polynomials of the triangular Hadamard matrices of A158800: p(x,n)=If[n less than or equal to 2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}],If[n greater than m then m+1].

This page as a plain text file.
%I A158810 #4 Jul 22 2025 06:23:15
%S A158810 0,-1,0,-2,-1,-2,3,0,0,0,-4,-1,0,0,-4,5,0,-2,0,-4,0,6,-1,-2,3,-4,5,6,
%T A158810 -7,0,0,0,0,0,0,0,-8,-1,0,0,0,0,0,0,-8,9,0,-2,0,0,0,0,0,-8,0,10,-1,-2,
%U A158810 3,0,0,0,0,-8,9,10,-11,0,0,0,-4,0,0,0,-8,0,0,0,12,-1,0,0,-4,5,0,0,-8,9,0,0
%N A158810 Coefficients of the differentiated row polynomials of the triangular Hadamard matrices of A158800: p(x,n)=If[n less than or equal to 2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}],If[n greater than m then m+1].
%C A158810 Row sums are:
%C A158810 {0, -1, -2, 0, -4, 0, 0, 0, -8, 0, 0, 0, 0, 0, 0, 0,...}.
%C A158810 The absolute values of the row sums are:
%C A158810 {0, 1, 2, 6, 4, 10, 12, 28, 8, 18, 20, 44, 24, 52, 56, 120,...}.
%C A158810 In a quantum Heisenberg matrix mechanics based on the triangular Hadamards
%C A158810 where the H(n) behave like wave functions Phi(n), these polynomials
%C A158810 are equivalent to the time dependent differentials:
%C A158810 Hamiltonian.Phi(n)=-Hbar*I*dPhi(n)/dt
%F A158810 Sum of the k-th row polynomial:
%F A158810 p(x,n)=If[n>2^m,Sum[H(2^m)[[k]]*x^(1-k),{k,1,n}]];
%F A158810 t(n,l)=coefficients(p(x,n),x)
%e A158810 {0},
%e A158810 {-1},
%e A158810 {0, -2},
%e A158810 {-1, -2, 3},
%e A158810 {0, 0, 0, -4},
%e A158810 {-1, 0, 0, -4, 5},
%e A158810 {0, -2, 0, -4, 0, 6},
%e A158810 {-1, -2, 3, -4, 5, 6, -7},
%e A158810 { 0, 0, 0, 0, 0, 0, 0, -8},
%e A158810 {-1, 0, 0, 0, 0, 0, 0, -8, 9},
%e A158810 {0, -2, 0, 0, 0, 0, 0, -8, 0, 10},
%e A158810 {-1, -2, 3, 0, 0, 0, 0, -8, 9, 10, -11},
%e A158810 {0, 0, 0, -4, 0, 0, 0, -8, 0, 0, 0, 12},
%e A158810 {-1, 0, 0, -4, 5, 0, 0, -8, 9, 0, 0, 12, -13},
%e A158810 {0, -2, 0, -4, 0, 6, 0, -8, 0, 10, 0, 12, 0, -14},
%e A158810 {-1, -2, 3, -4, 5, 6, -7, -8, 9, 10, -11, 12, -13, -14, 15}
%t A158810 Clear[HadamardMatrix];
%t A158810 MatrixJoinH[A_, B_] := Transpose[Join[Transpose[A], Transpose[B]]];
%t A158810 KroneckerProduct[M_, N_] := Module[{M1, N1, LM, LN, N2},
%t A158810 M1 = M;
%t A158810 N1 = N;
%t A158810 LM = Length[M1];
%t A158810 LN = Length[N1];
%t A158810 Do[M1[[i, j]] = M1[[i, j]]N1, {i, 1, LM}, {j, 1, LM}];
%t A158810 Do[M1[[i, 1]] = MatrixJoinH[M1[[i, 1]], M1[[i, j]]], {j, 2, LM}, {i, 1, LM}];
%t A158810 N2 = {};
%t A158810 Do[AppendTo[N2, M1[[i, 1]]], {i, 1, LM}];
%t A158810 N2 = Flatten[N2];
%t A158810 Partition[N2, LM*LN, LM*LN]]
%t A158810 HadamardMatrix[2] := {{1, 0}, {1, -1}};
%t A158810 HadamardMatrix[n_] := Module[{m}, m = {{1, 0}, {1, -1}}; KroneckerProduct[m, HadamardMatrix[n/2]]];
%t A158810 M = HadamardMatrix[16];
%t A158810 Table[D[Sum[M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], {n, 1, Length[M]}];
%t A158810 Table[CoefficientList[D[Sum[ M[[n]][[m]]*x^(m - 1), {m, 1, n}], {x, 1}], x], {n, 1, Length[M]}];
%t A158810 Flatten[%]
%Y A158810 A158800
%K A158810 sign,tabl,uned
%O A158810 0,4
%A A158810 _Roger L. Bagula_ and _Gary W. Adamson_, Mar 27 2009