This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158819 #22 Jan 20 2025 03:51:57 %S A158819 0,1,1,1,1,1,2,1,1,1,1,1,1,1,2,1,2,1,1,1,1,2,2,1,1,1,1,0,0,1,1,1,1,1, %T A158819 2,1,2,2,2,2,2,2,3,2,2,2,2,2,1,1,1,0,1,0,1,0,0,1,1,1,1,1,1,0,0,1,1,1, %U A158819 1,1,2,1,2,2,1,1,1,2,2,1,1,1,2,1,1,2,2,2,2,1,2,1,1,2,2,2,2,1,1,0,1,1,1,1,1 %N A158819 a(n) = (number of squarefree numbers <= n) minus round(n/zeta(2)). %C A158819 Race between the number of squarefree numbers and round(n/zeta(2)). %C A158819 First term < 0: a(172) = -1. %D A158819 G. H. Hardy and S. Ramanujan, The normal number of prime factors of a number n, Q. J. Math., 48 (1917), pp. 76-92. %D A158819 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth edition, Clarendon Press, 1979, pp. 269-270. %H A158819 Daniel Forgues, <a href="/A158819/b158819.txt">Table of n, a(n) for n=1..100000</a> %H A158819 Andrew Granville, <a href="https://doi.org/10.1155/S1073792898000592">ABC allows us to count squarefrees</a>, International Mathematics Research Notices, Vol. 1998, No. 19 (1998), pp. 991-1109; <a href="https://dms.umontreal.ca/~andrew/PDF/polysq3.pdf">alternative link</a>. %F A158819 Since zeta(2) = Sum_{i>=1} 1/(i^2) = (Pi^2)/6, we get: %F A158819 a(n) = A013928(n+1) - n/Sum_{i>=1} 1/(i^2) = O(sqrt(n)); %F A158819 a(n) = A013928(n+1) - 6*n/(Pi^2) = O(sqrt(n)). %t A158819 seq[lim_] := Accumulate[Boole[SquareFreeQ /@ Range[lim]]] - Round[Range[lim]/Zeta[2]]; seq[105] (* _Amiram Eldar_, Jan 20 2025 *) %Y A158819 Cf. A008966 (1 if n is squarefree, else 0). %Y A158819 Cf. A013928 (number of squarefree numbers < n). %Y A158819 Cf. A100112 (if n is the k-th squarefree number then k else 0). %Y A158819 Cf. A057627 (number of nonsquarefree numbers not exceeding n). %Y A158819 Cf. A005117 (squarefree numbers). %Y A158819 Cf. A013929 (nonsquarefree numbers). %Y A158819 Cf. A013661 (zeta(2)). %K A158819 sign %O A158819 1,7 %A A158819 _Daniel Forgues_, Mar 27 2009