This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158821 #17 Apr 05 2023 09:34:45 %S A158821 1,1,1,2,0,1,3,0,0,1,4,0,0,0,1,5,0,0,0,0,1,6,0,0,0,0,0,1,7,0,0,0,0,0, %T A158821 0,1,8,0,0,0,0,0,0,0,1,9,0,0,0,0,0,0,0,0,1,10,0,0,0,0,0,0,0,0,0,1,11, %U A158821 0,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,0,1,13,0,0,0,0,0,0,0,0,0,0,0,0,1 %N A158821 Triangle read by rows: row n (n>=0) ends with 1, and for n>=1 begins with n; other entries are zero. %H A158821 G. C. Greubel, <a href="/A158821/b158821.txt">Rows n = 0..50 of the triangle, flattened</a> %F A158821 T(n, k) = A145677(n, n-k-1). - _R. J. Mathar_, Apr 01 2009 %F A158821 From _G. C. Greubel_, Dec 22 2021: (Start) %F A158821 Sum_{k=0..n} T(n, k) = A000027(n). %F A158821 Sum_{k=0..floor(n/2)} T(n-k, k) = A109613(n). (End) %e A158821 Triangle begins: %e A158821 1; %e A158821 1, 1; %e A158821 2, 0, 1; %e A158821 3, 0, 0, 1; %e A158821 4, 0, 0, 0, 1; %e A158821 5, 0, 0, 0, 0, 1; %e A158821 6, 0, 0, 0, 0, 0, 1; %e A158821 7, 0, 0, 0, 0, 0, 0, 1; %p A158821 A158821:= proc(n,k) %p A158821 if n = k then 1; %p A158821 elif k = 0 then n; %p A158821 else 0; %p A158821 end if; %p A158821 end proc: # _R. J. Mathar_, Jan 08 2015 %t A158821 T[n_, k_]:= If[k==0, Boole[n==0] +n, If[k==n, 1, 0]]; %t A158821 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Dec 22 2021 *) %t A158821 Join[{1},Table[Join[{n},PadLeft[{1},n,0]],{n,15}]]//Flatten (* _Harvey P. Dale_, Apr 05 2023 *) %o A158821 (Sage) %o A158821 def A158821(n,k): %o A158821 if (k==0): return n + bool(n==0) %o A158821 elif (k==n): return 1 %o A158821 else: return 0 %o A158821 flatten([[A158821(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Dec 22 2021 %Y A158821 Cf. A000027, A109613, A145677. %K A158821 nonn,tabl,easy %O A158821 0,4 %A A158821 _Gary W. Adamson_, Mar 30 2008