This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158823 #16 Apr 01 2021 14:37:54 %S A158823 1,3,1,6,2,2,10,3,4,3,15,4,6,6,4,21,5,8,9,8,5,28,6,10,12,12,10,6,36,7, %T A158823 12,15,16,15,12,7,45,8,14,18,20,20,18,14,8,55,9,16,21,24,25,24,21,16, %U A158823 9,66,10,18,24,28,30,30,28,24,18,10,78,11,20,27,32,35,36,35,32,27,20,11 %N A158823 Triangle read by rows: matrix product A004736 * A158821. %H A158823 G. C. Greubel, <a href="/A158823/b158823.txt">Rows n = 1..50 of the triangle, flattened</a> %F A158823 Sum_{k=1..n} T(n, k) = A000292(n). %F A158823 T(n, k) = Sum_{j=k..n} A004736(n, j)*A158821(j-1, k-1). %F A158823 From _R. J. Mathar_, Mar 03 2011: (Start) %F A158823 T(n, k) = (n-k+1)*(k-1), k>1. %F A158823 T(n, 1) = A000217(n). (End) %e A158823 First few rows of the triangle = %e A158823 1; %e A158823 3, 1; %e A158823 6, 2, 2; %e A158823 10, 3, 4, 3; %e A158823 15, 4, 6, 6, 4; %e A158823 21, 5, 8, 9, 8, 5; %e A158823 28, 6, 10, 12, 12, 10, 6; %e A158823 36, 7, 12, 15, 16, 15, 12, 7; %e A158823 45, 8, 14, 18, 20, 20, 18, 14, 8; %e A158823 55, 9, 16, 21, 24, 25, 24, 21, 16, 9; %e A158823 66, 10, 18, 24, 28, 30, 30, 28, 24, 18, 10; %e A158823 78, 11, 20, 27, 32, 35, 36, 35, 32, 27, 20, 11; %e A158823 91, 12, 22, 30, 36, 40, 42, 42, 40, 36, 30, 22, 12; %p A158823 A158823 := proc(n,m) add( A004736(n,k)*A158821(k-1,m-1),k=1..n) ; end: seq(seq(A158823(n,m),m=1..n),n=1..8) ; # _R. J. Mathar_, Oct 22 2009 %t A158823 Table[If[k==1, Binomial[n+1, 2], (n-k+1)*(k-1)], {n,15}, {k,n}]//Flatten (* _G. C. Greubel_, Apr 01 2021 *) %o A158823 (Magma) [k eq 1 select Binomial(n+1, 2) else (n-k+1)*(k-1): k in [1..n], n in [1..15]]; // _G. C. Greubel_, Apr 01 2021 %o A158823 (Sage) flatten([[binomial(n+1, 2) if k==1 else (n-k+1)*(k-1) for k in (1..n)] for n in (1..15)]) # _G. C. Greubel_, Apr 01 2021 %Y A158823 Cf. A000292 (row sums), A003991, A004736, A158821. %K A158823 nonn,tabl,easy %O A158823 1,2 %A A158823 _Gary W. Adamson_ & _Roger L. Bagula_, Mar 28 2009 %E A158823 Corrected A-number in a formula - _R. J. Mathar_, Oct 30 2009