cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals.

This page as a plain text file.
%I A158825 #16 May 18 2024 14:53:51
%S A158825 1,1,1,1,2,2,1,3,6,5,1,4,12,21,14,1,5,20,54,80,42,1,6,30,110,260,322,
%T A158825 132,1,7,42,195,640,1310,1348,429,1,8,56,315,1330,3870,6824,5814,1430,
%U A158825 1,9,72,476,2464,9380,24084,36478,25674,4862,1,10,90,684,4200,19852,67844,153306,199094,115566,16796
%N A158825 Square array of coefficients in the successive iterations of x*C(x) = (1-sqrt(1-4*x))/2 where C(x) is the g.f. of the Catalan numbers (A000108); read by antidiagonals.
%H A158825 Paul D. Hanna, <a href="/A158825/b158825.txt">Table of n, a(n), n = 1..1275 (rows 1..50)</a>
%H A158825 Frédéric Chapoton and Vincent Pilaud, <a href="https://arxiv.org/abs/2201.06896">Shuffles of deformed permutahedra, multiplihedra, constrainahedra, and biassociahedra</a>, arXiv:2201.06896 [math.CO], 2022. See p. 26.
%F A158825 G.f. of column n = (g.f. of row n of A158830)/(1-x)^n.
%F A158825 Row k equals the first column of the k-th matrix power of Catalan triangle A033184; thus triangle A033184 transforms row n into row n+1 of this array (A158825). - _Paul D. Hanna_, Mar 30 2009
%F A158825 From _G. C. Greubel_, Apr 01 2021: (Start)
%F A158825 T(n, 1) = A000012(n),   T(n, 2) = A000027(n).
%F A158825 T(n, 3) = A002378(n),   T(n, 4) = A160378(n+1). (End)
%e A158825 Square array of coefficients in iterations of x*C(x) begins:
%e A158825   1,  1,   2,    5,    14,      42,      132,       429,       1430, ... A000108;
%e A158825   1,  2,   6,   21,    80,     322,     1348,      5814,      25674, ... A121988;
%e A158825   1,  3,  12,   54,   260,    1310,     6824,     36478,     199094, ... A158826;
%e A158825   1,  4,  20,  110,   640,    3870,    24084,    153306,     993978, ... A158827;
%e A158825   1,  5,  30,  195,  1330,    9380,    67844,    500619,    3755156, ... A158828;
%e A158825   1,  6,  42,  315,  2464,   19852,   163576,   1372196,   11682348, ...;
%e A158825   1,  7,  56,  476,  4200,   38052,   351792,   3305484,   31478628, ...;
%e A158825   1,  8,  72,  684,  6720,   67620,   693048,   7209036,   75915708, ...;
%e A158825   1,  9,  90,  945, 10230,  113190,  1273668,  14528217,  167607066, ...;
%e A158825   1, 10, 110, 1265, 14960,  180510,  2212188,  27454218,  344320262, ...;
%e A158825   1, 11, 132, 1650, 21164,  276562,  3666520,  49181418,  666200106, ...;
%e A158825   1, 12, 156, 2106, 29120,  409682,  5841836,  84218134, 1225314662, ...;
%e A158825   1, 13, 182, 2639, 39130,  589680,  8999172, 138755799, 2157976392, ...;
%e A158825   1, 14, 210, 3255, 51520,  827960, 13464752, 221101608, 3660331064, ...;
%e A158825   1, 15, 240, 3960, 66640, 1137640, 19640032, 342179672, 6007747368, ...;
%e A158825   1, 16, 272, 4760, 84864, 1533672, 28012464, 516105720, 9578580504, ...;
%e A158825 ILLUSTRATE ITERATIONS.
%e A158825        Let G(x) = x*C(x), then the first few iterations of G(x) are:
%e A158825            G(x) = x +   x^2 +  2*x^3 +   5*x^4 +  14*x^5 + ...;
%e A158825         G(G(x)) = x + 2*x^2 +  6*x^3 +  21*x^4 +  80*x^5 + ...;
%e A158825      G(G(G(x))) = x + 3*x^2 + 12*x^3 +  54*x^4 + 260*x^5 + ...;
%e A158825   G(G(G(G(x)))) = x + 4*x^2 + 20*x^3 + 110*x^4 + 640*x^5 + ...;
%e A158825 ...
%e A158825 RELATED TRIANGLES.
%e A158825 The g.f. of column n is (g.f. of row n of A158830)/(1-x)^n
%e A158825 where triangle A158830 begins: 1;
%e A158825       1,       0;
%e A158825       2,       0,        0;
%e A158825       5,       1,        0,        0;
%e A158825      14,      10,        0,        0,       0;
%e A158825      42,      70,        8,        0,       0,       0;
%e A158825     132,     424,      160,        4,       0,       0,     0;
%e A158825     429,    2382,     1978,      250,       1,       0,     0,   0;
%e A158825    1430,   12804,    19508,     6276,     302,       0,     0,   0, 0;
%e A158825    4862,   66946,   168608,   106492,   15674,     298,     0,   0, 0, 0;
%e A158825   16796,  343772,  1337684,  1445208,  451948,   33148,   244,   0, 0, 0, 0;
%e A158825   58786, 1744314, 10003422, 16974314, 9459090, 1614906, 61806, 162, 0, 0, 0, 0;
%e A158825   ...
%e A158825 Triangle A158835 transforms one diagonal into the next:
%e A158825        1;
%e A158825        1,      1;
%e A158825        4,      2,     1;
%e A158825       27,     11,     3,    1;
%e A158825      254,     94,    21,    4,   1;
%e A158825     3062,   1072,   217,   34,   5,  1;
%e A158825    45052,  15212,  2904,  412,  50,  6, 1;
%e A158825   783151, 257777, 47337, 6325, 695, 69, 7, 1; ...
%e A158825 so that:
%e A158825   A158835 * A158831 = A158832;
%e A158825   A158835 * A158832 = A158833;
%e A158825   A158835 * A158833 = A158834;
%e A158825 where the diagonals start:
%e A158825   A158831 = [1, 1,  6,  54,  640,  9380,  163576,  3305484, ...];
%e A158825   A158832 = [1, 2, 12, 110, 1330, 19852,  351792,  7209036, ...];
%e A158825   A158833 = [1, 3, 20, 195, 2464, 38052,  693048, 14528217, ...];
%e A158825   A158834 = [1, 4, 30, 315, 4200, 67620, 1273668, 27454218, ...].
%t A158825 Clear[row]; nmax = 12;
%t A158825 row[n_]:= row[n]= CoefficientList[Nest[(1-Sqrt[1-4#])/2&, x, n] + O[x]^(nmax+1), x] //Rest;
%t A158825 T[n_, k_]:= row[n][[k]];
%t A158825 Table[T[n-k+1, k], {n, nmax}, {k, n}]//Flatten (* _Jean-François Alcover_, Jul 13 2018, updated Aug 09 2018 *)
%o A158825 (PARI) {T(n,k)= local(F=serreverse(x-x^2+O(x^(k+2))), G=x);
%o A158825 for(i=1, n, G=subst(F,x,G)); polcoeff(G,k)}
%Y A158825 Rows: A000108, A121988, A158826, A158827, A158828.
%Y A158825 Columns: A000012, A000027, A002378, A160378.
%Y A158825 Antidiagonal sums: A158829.
%Y A158825 Diagonals: A158831, A158832, A158833, A158834.
%Y A158825 Related triangles: A158830, A158835.
%Y A158825 Variant: A122888.
%K A158825 nonn,tabl
%O A158825 1,5
%A A158825 _Paul D. Hanna_, Mar 28 2009, Mar 29 2009