cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158835 Triangle, read by rows, that transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).

This page as a plain text file.
%I A158835 #17 Oct 16 2024 21:52:56
%S A158835 1,1,1,4,2,1,27,11,3,1,254,94,21,4,1,3062,1072,217,34,5,1,45052,15212,
%T A158835 2904,412,50,6,1,783151,257777,47337,6325,695,69,7,1,15712342,5074738,
%U A158835 906557,116372,12035,1082,91,8,1,357459042,113775490,19910808,2483706
%N A158835 Triangle, read by rows, that transforms diagonals in the array A158825 of coefficients of successive iterations of x*C(x) where C(x) is the Catalan function (A000108).
%C A158835 Conjecture: n-th reversed row polynomial is t_n where we start with vector v of fixed length m with elements v_i = 1, then set t := v and for i=1..m-1, for j=1..i, for k=j+1..i+1 apply v_k := v_k + z*v_{k-1} and t_{i+1} := v_{i+1} (after ending each cycle for j). - _Mikhail Kurkov_, Sep 03 2024
%H A158835 Paul D. Hanna, <a href="/A158835/b158835.txt">Table of n, a(n), n = 1..496 (rows 1..31).</a>
%e A158835 Triangle T begins:
%e A158835   1;
%e A158835   1,1;
%e A158835   4,2,1;
%e A158835   27,11,3,1;
%e A158835   254,94,21,4,1;
%e A158835   3062,1072,217,34,5,1;
%e A158835   45052,15212,2904,412,50,6,1;
%e A158835   783151,257777,47337,6325,695,69,7,1;
%e A158835   15712342,5074738,906557,116372,12035,1082,91,8,1;
%e A158835   357459042,113775490,19910808,2483706,246596,20859,1589,116,9,1;
%e A158835   9094926988,2861365660,492818850,60168736,5801510,470928,33747,2232,144,10,1;
%e A158835   ...
%e A158835 Array A158825 of coefficients in iterations of x*C(x) begins:
%e A158835   1,1,2,5,14,42,132,429,1430,4862,16796,58786,208012,742900,...;
%e A158835   1,2,6,21,80,322,1348,5814,25674,115566,528528,2449746,...;
%e A158835   1,3,12,54,260,1310,6824,36478,199094,1105478,6227712,...;
%e A158835   1,4,20,110,640,3870,24084,153306,993978,6544242,43652340,...;
%e A158835   1,5,30,195,1330,9380,67844,500619,3755156,28558484,...;
%e A158835   1,6,42,315,2464,19852,163576,1372196,11682348,100707972,...;
%e A158835   1,7,56,476,4200,38052,351792,3305484,31478628,303208212,...;
%e A158835   1,8,72,684,6720,67620,693048,7209036,75915708,807845676,...;
%e A158835   1,9,90,945,10230,113190,1273668,14528217,167607066,...;
%e A158835   1,10,110,1265,14960,180510,2212188,27454218,344320262,...;
%e A158835   ...
%e A158835 This triangle transforms diagonals of A158825 into each other:
%e A158835 T*A158831 = A158832; T*A158832 = A158833; T*A158833 = A158834;
%e A158835 where:
%e A158835 A158831 = [1,1,6,54,640,9380,163576,3305484,...];
%e A158835 A158832 = [1,2,12,110,1330,19852,351792,7209036,...];
%e A158835 A158833 = [1,3,20,195,2464,38052,693048,14528217,...];
%e A158835 A158834 = [1,4,30,315,4200,67620,1273668,27454218,...].
%o A158835 (PARI) {T(n, k)=local(F=x, CAT=serreverse(x-x^2+x*O(x^(n+2))), M, N, P, m=max(n, k)); M=matrix(m+2, m+2, r, c, F=x; for(i=1, r+c-2, F=subst(F, x, CAT)); polcoeff(F, c)); N=matrix(m+1, m+1, r, c, M[r, c]); P=matrix(m+1, m+1, r, c, M[r+1, c]); (P~*N~^-1)[n+1, k+1]}
%o A158835 for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
%Y A158835 Cf. columns: A158836, A158837, A158838, A158839, row sums: A158840.
%Y A158835 Cf. A158825, A158831, A158832, A158833, A158834, variant: A135080.
%K A158835 nonn,tabl
%O A158835 1,4
%A A158835 _Paul D. Hanna_, Mar 28 2009, Mar 29 2009
%E A158835 Edited by _N. J. A. Sloane_, Oct 04 2010, to make entries, offset, b-file and link to b-file all consistent.