This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158854 #11 Oct 27 2013 04:40:31 %S A158854 1,1,-1,1,-2,1,1,-1,-1,1,1,-2,0,2,-1,1,-1,-2,2,1,-1,1,-2,-1,4,-1,-2,1, %T A158854 1,-1,-3,3,3,-3,-1,1,1,-2,-2,6,0,-6,2,2,-1,1,-1,-4,4,6,-6,-4,4,1,-1,1, %U A158854 -2,-3,8,2,-12,2,8,-3,-2,1 %N A158854 Triangle T(n,k) read by rows: coefficient [x^k] of the polynomial (1-x)^(1+floor(n/2))* (1+x)^floor((n-1)/2) in row n, column k. %C A158854 Row sums are zero except for n=0. %F A158854 T(n,k) = T(n-2,k) - T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,2) = 1, T(1,1)=-1, T(2,1)=-2, T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Oct 25 2013 %e A158854 1; %e A158854 1, -1; %e A158854 1, -2, 1; %e A158854 1, -1, -1, 1; %e A158854 1, -2, 0, 2, -1; %e A158854 1, -1, -2, 2, 1, -1; %e A158854 1, -2, -1, 4, -1, -2, 1; %e A158854 1, -1, -3, 3, 3, -3, -1, 1; %e A158854 1, -2, -2, 6, 0, -6, 2, 2, -1; %e A158854 1, -1, -4, 4, 6, -6, -4, 4, 1, -1; %e A158854 1, -2, -3, 8, 2, -12, 2, 8, -3, -2, 1; %p A158854 A158854 := proc(n,k) %p A158854 (1-x)^(1+floor(n/2))*(1+x)^floor((n-1)/2) ; %p A158854 coeftayl(%,x=0,k) ; %p A158854 end proc: # _R. J. Mathar_, Apr 08 2013 %t A158854 Clear[p, x, n, m, a]; %t A158854 p[x_, n_] = If[n == 0, 1, (1 - x)^(Floor[(n)/ 2] + 1)(1 + x)^(Floor[(n - 1)/2])]; %t A158854 Table[ExpandAll[p[x, n]], {n, 0, 10}]; %t A158854 Table[CoefficientList[ExpandAll[p[x, n]], x], {n, 0, 10}]; %t A158854 Flatten[%] %Y A158854 Cf. A051160 %K A158854 sign,tabl,easy %O A158854 0,5 %A A158854 _Roger L. Bagula_, Mar 28 2009