cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158867 Triangle T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) * Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2), read by rows.

This page as a plain text file.
%I A158867 #9 Mar 08 2022 03:47:37
%S A158867 1,5,4,14,14,12,126,108,108,96,594,594,528,528,480,7722,6864,6864,
%T A158867 6240,6240,5760,51480,51480,46800,46800,43200,43200,40320,875160,
%U A158867 795600,795600,734400,734400,685440,685440,645120,7558200,7558200,6976800,6976800,6511680,6511680,6128640,6128640,5806080
%N A158867 Triangle T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) *  Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2), read by rows.
%H A158867 G. C. Greubel, <a href="/A158867/b158867.txt">Rows n = 1..50 of the triangle, flattened</a>
%F A158867 T(n, k) = (2*n+1)!! * 2^(1 + floor(n/2) + floor(k/2) + floor((k-1)/2)) *  Beta(floor(n/2) + floor((k-1)/2) + 2, floor((n-1)/2) + floor(k/2) + 2).
%F A158867 T(n, n) = A268363(n). - _G. C. Greubel_, Mar 08 2022
%e A158867 Triangle begins as:
%e A158867         1;
%e A158867         5,       4;
%e A158867        14,      14,      12;
%e A158867       126,     108,     108,      96;
%e A158867       594,     594,     528,     528,     480;
%e A158867      7722,    6864,    6864,    6240,    6240,    5760;
%e A158867     51480,   51480,   46800,   46800,   43200,   43200,   40320;
%e A158867    875160,  795600,  795600,  734400,  734400,  685440,  685440,  645120;
%e A158867   7558200, 7558200, 6976800, 6976800, 6511680, 6511680, 6128640, 6128640, 5806080;
%t A158867 T[n_, k_]:= (2*n+1)!!*2^(1+Floor[n/2]+Floor[k/2]+Floor[(k-1)/2])*Beta[Floor[n/2] +Floor[(k- 1)/2] +2, Floor[(n-1)/2] +Floor[k/2] +2];
%t A158867 Table[T[n, k], {n,10}, {k,n}]//Flatten (* modified by _G. C. Greubel_, Mar 08 2022 *)
%o A158867 (Sage)
%o A158867 def A158867(n,k): return (2*n+1).multifactorial(2)*2^(1+(n//2)+(k//2)+((k-1)//2))*beta(2+(n//2)+((k-1)//2), 2+((n-1)//2)+(k//2))
%o A158867 flatten([[A158867(n,k) for k in (1..n)] for n in (1..10)]) # _G. C. Greubel_, Mar 08 2022
%Y A158867 Cf. A158868, A268363.
%K A158867 nonn,tabl
%O A158867 1,2
%A A158867 _Roger L. Bagula_, Mar 28 2009
%E A158867 Edited by _G. C. Greubel_, Mar 08 2022