A110928
Pairs of distinct numbers m and n, m
6, 7, 24, 26, 30, 35, 40, 47, 66, 77, 78, 91, 102, 119, 114, 133, 120, 130, 120, 141, 130, 141, 136, 157, 138, 161, 150, 175, 168, 182, 174, 203, 186, 215, 186, 217, 215, 217, 222, 259, 230, 249, 246, 287, 258, 301, 264, 286, 280, 282, 280, 329, 282, 329, 318
Offset: 1
Examples
sigma_2(30)=1^1+2^2+3^2+5^2+6^2+10^2+15^2+30^2=1300 and sigma_2(35)=1^2+5^2+7^2+35^2=1300.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory); sigmap := proc(p,n) convert(map(proc(z) z^p end, divisors(n)),`+`) end; SA2:=[]: for z from 1 to 1 do for m to 1500 do M:=sigmap(2,m); for n from m+1 to 1500 do N:=sigmap(2,n); if N=M then SA2:=[op(SA2),[m,n,N]] fi od od od; SA2; select(proc(z) z[1]<=1000 end, SA2); #just to shorten it a bit
-
Mathematica
a[n_] := Module[{s = DivisorSigma[2, n], ans = {}}, kmax = Ceiling[Sqrt[s]]; Do[If[DivisorSigma[2, k] == s, AppendTo[ans, k]], {k, n + 1, kmax}]; ans]; s = {}; Do[v = a[n]; Do[s = Join[s, {n, v[[k]]}], {k, 1, Length[v]}], {n, 1, 400}]; s (* Amiram Eldar, Sep 08 2019 *)
Formula
sigma_2(m)=sigma_2(n), m
Comments