cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158930 a(n) is the smallest integer not yet in the sequence with no common base-5 digit with a(n-1).

This page as a plain text file.
%I A158930 #8 Jun 25 2018 03:47:09
%S A158930 1,2,3,4,5,12,6,10,8,14,15,7,18,9,13,20,11,19,25,17,21,50,16,22,26,23,
%T A158930 27,24,28,62,29,63,30,64,31,52,33,54,41,60,34,53,46,65,49,67,45,68,
%U A158930 100,32,75,36,78,37,79,56,90,39,93,35,94,51,98,55,99,57,95,61,103,156,69
%N A158930 a(n) is the smallest integer not yet in the sequence with no common base-5 digit with a(n-1).
%C A158930 Numbers of A031946 or of the 4th row of A051845 do not appear in this sequence. In base-5 notation the sequence reads 1,2,3,4,10,22,11,20,13,24,30,12,33,14,...
%H A158930 Robert Israel, <a href="/A158930/b158930.txt">Table of n, a(n) for n = 1..10000</a>
%e A158930 The terms a(1) to a(4) are the first integers in order because they have only a single, non-common digit. a(5)=5(base10)=10(base5) does not share a digit with a(4)=4(base10)=4(base5). The numbers 6(base10)=11(base5) to 9(base10)=14(base5) are ruled out for a(6) because they share a 1 with 10(base5). The numbers 10(base10)=20(base5) and 11(base10)=21(base5) are also ruled out for a(6) because they either have a 0 or a 1 in common with a(5)=10(base5). So a(6)=12(base10)=22(base5) with no 0 or 1 is selected.
%p A158930 for S in combinat:-powerset({$0..4}) minus {{},{$0..4}} do
%p A158930   if member(0,S) then Last[S]:= 0 else Last[S]:= 1 fi od:
%p A158930 Next:= proc(S)
%p A158930   global Last; local L, nL;
%p A158930   if nops(S) = 1 then Last[S]:= Last[S]*5+S[1]; return Last[S] fi;
%p A158930   Last[S]:= 1+Last[S];
%p A158930   L:= convert(Last[S],base,nops(S));
%p A158930   nL:= nops(L);
%p A158930   if (not member(0,S)) then
%p A158930    if L[-1] > 1 then
%p A158930     Last[S]:= (nops(S))^nL;
%p A158930     L:= [0$nL,1];
%p A158930    else nL:= nL-1
%p A158930    fi
%p A158930   fi;
%p A158930   L:= subs({seq(i-1=S[i],i=1..nops(S))},L);
%p A158930   add(L[i]*5^(i-1),i=1..nL)
%p A158930 end proc:
%p A158930 Done:= {1}:
%p A158930 A[1]:= 1:
%p A158930 for n from 2 to 100 do
%p A158930   S:= {$0..4} minus convert(convert(A[n-1],base,5),set);
%p A158930   do
%p A158930     x:= Next(S);
%p A158930     if not member(x,Done) then break fi
%p A158930   od;
%p A158930   A[n]:= x;
%p A158930   Done:= Done union {x};
%p A158930 od:
%p A158930 seq(A[i],i=1..100); # _Robert Israel_, Jun 25 2018
%Y A158930 Cf. A067581 (base-10), A158928 (base-3), A158929 (base-4).
%K A158930 base,easy,nonn,look
%O A158930 1,2
%A A158930 _R. J. Mathar_, Mar 31 2009