This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158944 #16 Aug 27 2021 16:34:00 %S A158944 1,0,1,2,0,1,0,2,0,1,3,0,2,0,1,0,3,0,2,0,1,4,0,3,0,2,0,1,0,4,0,3,0,2, %T A158944 0,1,5,0,4,0,3,0,2,0,1,0,5,0,4,0,3,0,2,0,1,6,0,5,0,4,0,3,0,2,0,1,0,6, %U A158944 0,5,0,4,0,3,0,2,0,1 %N A158944 Triangle by columns: the natural numbers interleaved with zeros in every column: (1, 0, 2, 0, 3, 0, 4, ...) %C A158944 Eigensequence of the triangle = A158943: (1, 1, 3, 5, 10, 19, 36, 69, 131, ...) %H A158944 D. E. Davenport, L. W. Shapiro and L. C. Woodson, <a href="https://doi.org/10.37236/2034">The Double Riordan Group</a>, The Electronic Journal of Combinatorics, 18(2) (2012). %F A158944 Triangle by columns: A027656: (1, 0, 2, 0, 3, 0, 4, 0, 5, ...) in every column. %F A158944 From _Peter Bala_, Aug 15 2021: (Start) %F A158944 T(n,k) = (1/2)*(n - k + 2) * (1 + (-1)^(n-k))/2 for 0 <= k <= n. %F A158944 Double Riordan array (1/(1-x)^2; x, x) as defined in Davenport et al. %F A158944 The m-th power of the array is the double Riordan array (1/(1 - x)^(2*m); x, x). Cf. A156663. (End) %e A158944 First few rows of the triangle = %e A158944 1; %e A158944 0, 1; %e A158944 2, 0, 1; %e A158944 0, 2, 0, 1; %e A158944 3, 0, 2, 0, 1; %e A158944 0, 3, 0, 2, 0, 1; %e A158944 4, 0, 3, 0, 2, 0, 1; %e A158944 0, 4, 0, 3, 0, 2, 0, 1; %e A158944 5, 0, 4, 0, 3, 0, 2, 0, 1; %e A158944 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; %e A158944 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; %e A158944 0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; %e A158944 7, 0, 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 1; %e A158944 ... %e A158944 The inverse array begins %e A158944 1; %e A158944 0, 1; %e A158944 -2, 0, 1; %e A158944 0, -2, 0, 1; %e A158944 1, 0, -2, 0, 1; %e A158944 0, 1, 0, -2, 0, 1; %e A158944 0, 0, 1, 0, -2, 0, 1; %e A158944 0, 0, 0, 1, 0, -2, 0, 1; %e A158944 0, 0, 0, 0, 1, 0, -2, 0, 1; %e A158944 ... - _Peter Bala_, Aug 15 2021 %p A158944 seq(seq((1/2)*(n - k + 2) * (1 + (-1)^(n-k))/2, k = 0..n), n = 0..10) # _Peter Bala_, Aug 15 2021 %Y A158944 Cf. A158943, A158945, A156663. %K A158944 nonn,tabl,easy %O A158944 1,4 %A A158944 _Gary W. Adamson_, Mar 31 2009