This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158960 #28 Sep 08 2022 08:45:43 %S A158960 1,2,-46,-292,6316,71032,-1436936,-24183472,454560656,10582510112, %T A158960 -183387274976,-5658029605952,89546942024896,3573911647620992, %U A158960 -51057689020940416,-2603853531376575232,33085559702952161536,2149253944507164508672 %N A158960 Numerator of Hermite(n, 1/5). %C A158960 The denominators are 5^n = A000351(n) (conjectured). - _M. F. Hasler_, Feb 16 2014 %H A158960 Vincenzo Librandi, <a href="/A158960/b158960.txt">Table of n, a(n) for n = 0..200</a> %H A158960 DLMF <a href="https://dlmf.nist.gov/18.9">Digital library of mathematical functions</a>, Table 18.9.1 for H_n(x) %F A158960 D-finite with recurrence a(n) -2*a(n-1) +50*(n-1)*a(n-2)=0. [DLMF] - _R. J. Mathar_, Feb 16 2014 %F A158960 a(n) = (-1)^floor(n/2)*2^ceiling(n/2)*A237987(n). - _M. F. Hasler_, Feb 16 2014 %F A158960 From _G. C. Greubel_, Jun 09 2018: (Start) %F A158960 a(n) = 5^n * Hermite(n,1/5). %F A158960 E.g.f.: exp(2*x-25*x^2). %F A158960 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/5)^(n-2k)/(k!*(n-2k)!). (End) %e A158960 Numerators of 1, 2/5, -46/25, -292/125, 6316/625, 71032/3125, -1436936/15625,.. %p A158960 A158960 := proc(n) %p A158960 orthopoly[H](n,1/5) ; %p A158960 numer(%) ; %p A158960 end proc: # _R. J. Mathar_, Feb 16 2014 %t A158960 Numerator[Table[HermiteH[n,1/5],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Mar 23 2011*) %o A158960 (PARI) A158960 = n->numerator(polhermite(n,1/5)) \\ _M. F. Hasler_, Feb 16 2014 %o A158960 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 02 2018 %K A158960 sign,frac %O A158960 0,2 %A A158960 _N. J. A. Sloane_, Nov 12 2009