This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158961 #15 Sep 08 2022 08:45:43 %S A158961 1,4,-34,-536,2956,119024,-262904,-36758816,-55018864,14483450944, %T A158961 82692292576,-6910956301696,-73124586123584,3854075436523264, %U A158961 62947282726422656,-2446063674660594176,-56994716743459368704,1728872072754637865984 %N A158961 Numerator of Hermite(n, 2/5). %H A158961 G. C. Greubel, <a href="/A158961/b158961.txt">Table of n, a(n) for n = 0..450</a> %F A158961 From _G. C. Greubel_, Jul 09 2018: (Start) %F A158961 a(n) = 5^n * Hermite(n, 2/5). %F A158961 E.g.f.: exp(4*x-25*x^2). %F A158961 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/5)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A158961 Numerator[Table[HermiteH[n,2/5],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011 *) %t A158961 Table[5^n*HermiteH[n, 2/5], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A158961 (PARI) a(n)=numerator(polhermite(n,2/5)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A158961 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A158961 Cf. A158954, A158960. %K A158961 sign,frac %O A158961 0,2 %A A158961 _N. J. A. Sloane_, Nov 12 2009