cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A158965 Numerator of Hermite(n, 3/5).

This page as a plain text file.
%I A158965 #14 Sep 08 2022 08:45:43
%S A158965 1,6,-14,-684,-2004,124776,1249656,-29934864,-616988784,8272012896,
%T A158965 327277030176,-2172344266944,-193036432198464,145187966975616,
%U A158965 126344808730855296,656437275502200576,-90819982895128268544,-1070069717772530072064,70776567154223847830016
%N A158965 Numerator of Hermite(n, 3/5).
%H A158965 G. C. Greubel, <a href="/A158965/b158965.txt">Table of n, a(n) for n = 0..450</a>
%F A158965 From _G. C. Greubel_, Jun 02 2018: (Start)
%F A158965 a(n) = 5^n * Hermite(n, 3/5).
%F A158965 E.g.f.: exp(6*x - 25*x^2).
%F A158965 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/5)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A158965 Numerator[Table[HermiteH[n,3/5],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011*)
%t A158965 Table[5^n*HermiteH[n, 3/5], {n,0,30}] (* _G. C. Greubel_, Jul 13 2018 *)
%o A158965 (PARI) a(n)=numerator(polhermite(n,3/5)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A158965 (PARI) x='x+O('x^30); Vec(serlaplace(exp(6*x - 25*x^2))) \\ _G. C. Greubel_, Jul 13 2018
%o A158965 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 13 2018
%Y A158965 Cf. A158960, A158961.
%K A158965 sign,frac
%O A158965 0,2
%A A158965 _N. J. A. Sloane_, Nov 12 2009