This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158967 #23 Sep 08 2022 08:45:43 %S A158967 1,8,14,-688,-7604,76768,2515144,-2909248,-903574384,-6064895872, %T A158967 358089305824,5897162382592,-149771819142464,-4736471982694912, %U A158967 59459906581042304,3791209640534776832,-14265252811503513344,-3147089734919849572352 %N A158967 Numerator of Hermite(n, 4/5). %H A158967 G. C. Greubel, <a href="/A158967/b158967.txt">Table of n, a(n) for n = 0..450</a> %H A158967 DLMF, <a href="https://dlmf.nist.gov/18.9">Digital library of mathematical functions</a>, Table 18.9.1 for H_n(x). %F A158967 From _G. C. Greubel_, Jul 14 2018: (Start) %F A158967 a(n) = 5^n * Hermite(n, 4/5). %F A158967 E.g.f.: exp(8*x - 25*x^2). %F A158967 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/5)^(n-2*k)/(k!*(n-2*k)!)). (End) %F A158967 D-finite with recurrence a(n) -8*a(n-1) +50*(n-1)*a(n-2)=0. - [DLMF] _Georg Fischer_, Feb 06 2021 %t A158967 Numerator[Table[HermiteH[n,4/5],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011*) %t A158967 Table[5^n*HermiteH[n, 4/5], {n,0,30}] (* _G. C. Greubel_, Jul 14 2018 *) %o A158967 (PARI) a(n)=numerator(polhermite(n,4/5)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A158967 (PARI) x='x+O('x^30); Vec(serlaplace(exp(8*x - 25*x^2))) \\ _G. C. Greubel_, Jul 14 2018 %o A158967 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 13 2018 %Y A158967 Cf. A158960, A158961. %K A158967 sign,frac %O A158967 0,2 %A A158967 _N. J. A. Sloane_, Nov 12 2009