This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158968 #27 Jul 13 2024 02:14:49 %S A158968 1,1,-17,-53,865,4681,-73169,-578717,8640577,91975825,-1307797649, %T A158968 -17863446149,241080488353,4099584856537,-52313249418065, %U A158968 -1085408633265389,13039168709612161,325636855090044193,-3664348770051277073,-109170689819225595605,1144036589538311163361 %N A158968 Numerator of Hermite(n, 1/6). %H A158968 G. C. Greubel, <a href="/A158968/b158968.txt">Table of n, a(n) for n = 0..450</a> %H A158968 DLMF, <a href="https://dlmf.nist.gov/18.9">Digital library of mathematical functions</a>, Table 18.9.1 for H_n(x). %F A158968 From _G. C. Greubel_, Jun 02 2018: (Start) %F A158968 a(n) = 3^n * Hermite(n, 1/6). %F A158968 E.g.f.: exp(x - 9*x^2). %F A158968 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/3)^(n-2*k)/(k!*(n-2*k)!)). (End) %F A158968 D-finite with recurrence a(n) -a(n-1) +18*(n-1)*a(n-2)=0. - [DLMF] _Georg Fischer_, Feb 06 2021 %t A158968 Numerator[Table[HermiteH[n,1/6],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011 *) %t A158968 Table[3^n*HermiteH[n, 1/6], {n,0, 50}] (* _G. C. Greubel_, Jul 10 2018 *) %o A158968 (PARI) a(n)=numerator(polhermite(n,1/6)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A158968 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/3)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 10 2018 %o A158968 (SageMath) [3^n*hermite(n, 1/6) for n in range(31)] # _G. C. Greubel_, Jul 12 2024 %Y A158968 Cf. A158811, A158960. %Y A158968 Sequences with e.g.f = exp(x + q*x^2): this sequence (q=-9), A158954 (q=-4), A362177 (q=-3), A362176 (q=-2), A293604 (q=-1), A000012 (q=0), A047974 (q=1), A115329 (q=2), A293720 (q=4). %K A158968 sign,frac %O A158968 0,3 %A A158968 _N. J. A. Sloane_, Nov 12 2009