This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A158980 #18 Sep 08 2022 08:45:43 %S A158980 1,2,-94,-580,26476,280312,-12412616,-189648688,8135757200, %T A158980 164956085792,-6845825678816,-175348615433792,7029102850896064, %U A158980 220268177451931520,-8514540677137722496,-319237020818325490432,11877900753755801088256,524319450150645971173888 %N A158980 Numerator of Hermite(n, 1/7). %H A158980 G. C. Greubel, <a href="/A158980/b158980.txt">Table of n, a(n) for n = 0..450</a> %F A158980 From _G. C. Greubel_, Jun 09 2018: (Start) %F A158980 a(n) = 7^n * Hermite(n,1/7). %F A158980 E.g.f.: exp(2*x-49*x^2). %F A158980 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/7)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A158980 Numerator[Table[HermiteH[n,1/7],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011*) %o A158980 (PARI) a(n)=numerator(polhermite(n,1/7)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A158980 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/7)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 09 2018 %Y A158980 Cf. A158811, A158954, A158960. %K A158980 sign,frac %O A158980 0,2 %A A158980 _N. J. A. Sloane_, Nov 12 2009