This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159009 #1 Jun 01 2010 03:00:00 %S A159009 1,5,11,233,97,36377,10637,8885119,18040327,107868664309,19821442673, %T A159009 2657527033463249,412093696402361,28353905269136197727, %U A159009 57058882710461852501,30872757660805358101602571 %N A159009 Numerator of the integral of x^n times the Cantor function, from 0 to 1. %F A159009 I(n) = 1/(2*(n+1)) + 1/(2*3^(n+1)-1) * sum_{i=0}{n-1} (n choose i) 2^(n-i) I(i) %e A159009 I(0) is obviously 1/2 by symmetry. %p A159009 for n from 0 to 20 do CI[n] := 1/(2*(n+1)) + 1/(2*(3^(n+1)-1)) * add(binomial(n,i)*2^(n-i)*CI[i],i=0..n-1); end do; %Y A159009 A095844/A095845 give the integrals of powers of the Cantor function itself. %Y A159009 A159010 gives the corresponding denominators. [From Simon Tatham (anakin(AT)pobox.com), Apr 02 2009] %K A159009 frac,nonn %O A159009 0,2 %A A159009 Simon Tatham (anakin(AT)pobox.com), Apr 02 2009