This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159017 #12 Sep 08 2022 08:45:43 %S A159017 1,3,-23,-261,1425,37683,-114951,-7579989,3009057,1949504355, %T A159017 4981904649,-608895679653,-3580317475407,223074988560531, %U A159017 2158637035450905,-93461683768765173,-1316530828322729919,43902789604639578819,847901139421483812393 %N A159017 Numerator of Hermite(n, 3/8). %H A159017 G. C. Greubel, <a href="/A159017/b159017.txt">Table of n, a(n) for n = 0..450</a> %F A159017 From _G. C. Greubel_, Jul 09 2018: (Start) %F A159017 a(n) = 4^n * Hermite(n, 3/8). %F A159017 E.g.f.: exp(3*x - 16*x^2). %F A159017 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/4)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159017 Numerator[Table[HermiteH[n,3/8],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011*) %t A159017 Table[4^n*HermiteH[n, 3/8], {n,0,30}] (* _G. C. Greubel_, Jul 09 2018 *) %o A159017 (PARI) a(n)=numerator(polhermite(n,3/8)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159017 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/4)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jul 09 2018 %Y A159017 Cf. A159014. %K A159017 sign,frac %O A159017 0,2 %A A159017 _N. J. A. Sloane_, Nov 12 2009