This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159030 #16 Sep 08 2022 08:45:43 %S A159030 1,2,-158,-964,74860,774392,-59087816,-870884656,65263814032, %T A159030 1259194142240,-92636252574176,-2225167015577152,160627468056027328, %U A159030 4646979614394038144,-328987488497205476480,-11197324742440089463552,777044947563329128919296 %N A159030 Numerator of Hermite(n, 1/9). %H A159030 G. C. Greubel, <a href="/A159030/b159030.txt">Table of n, a(n) for n = 0..450</a> %F A159030 From _G. C. Greubel_, Jun 09 2018: (Start) %F A159030 a(n) = 9^n * Hermite(n, 1/9). %F A159030 E.g.f.: exp(2*x-81*x^2). %F A159030 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/9)^(n-2k)/(k!*(n-2k)!)). (End) %t A159030 Numerator[Table[HermiteH[n,1/9],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 01 2011*) %o A159030 (PARI) a(n)=numerator(polhermite(n,1/9)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159030 (PARI) for(n=0,30, print1(9^n*polhermite(n,1/9), ", ")) \\ _G. C. Greubel_, Jun 10 2018 %o A159030 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 09 2018 %Y A159030 Cf. A158811, A158954, A158960, A158980. %K A159030 sign,frac %O A159030 0,2 %A A159030 _N. J. A. Sloane_, Nov 12 2009