cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159051 Numbers n such that Fibonacci(n-2) is divisible by n.

This page as a plain text file.
%I A159051 #12 Dec 20 2014 11:51:36
%S A159051 2,8,38,62,122,158,218,278,302,362,398,422,458,482,542,662,698,758,
%T A159051 818,842,878,884,902,998,1037,1082,1142,1157,1202,1238,1262,1322,1382,
%U A159051 1418,1478,1502,1538,1622,1658,1718,1838,1982,2018,2042,2078,2102,2138
%N A159051 Numbers n such that Fibonacci(n-2) is divisible by n.
%H A159051 Reinhard Zumkeller, <a href="/A159051/b159051.txt">Table of n, a(n) for n = 1..1000</a>
%e A159051 8=8/8=1, 38=14930352/38=392904, 62=1548008755920/62=24967883160, ...
%t A159051 lst={};Do[If[Mod[(Fibonacci[n-2]),n]==0,AppendTo[lst,n]],{n,7!}];lst
%t A159051 Select[Range[2,2200],Divisible[Fibonacci[#-2],#]&] (* _Harvey P. Dale_, Dec 20 2014 *)
%o A159051 (Haskell)
%o A159051 import Data.List (elemIndices)
%o A159051 a159051 n = a159051_list !! (n-1)
%o A159051 a159051_list = map (+ 2) $ elemIndices 0 $ zipWith mod a000045_list [2..]
%o A159051 -- _Reinhard Zumkeller_, Oct 13 2011
%o A159051 (PARI) is(n)=((Mod([1,1;1,0],n))^(n-2))[1,2]==0 \\ _Charles R Greathouse IV_, Feb 03 2014
%Y A159051 Cf. A123976, A000045, A023172, A069104.
%K A159051 nonn
%O A159051 1,1
%A A159051 _Vladimir Joseph Stephan Orlovsky_, Apr 03 2009