This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159075 #10 Jan 24 2019 16:16:25 %S A159075 0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %T A159075 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, %U A159075 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 %N A159075 a(1) = -1, otherwise a(n) = 0. %C A159075 a(0) = 0; for n >= 1, a(n) = function of negative sign for Dirichlet convolution. %C A159075 a(n) = Dirichlet inverse of itself. a(n) * 0(n) = a(n) * A000004(n) = 0(n) = A000004(n), a(n) * b(n) = -[b(n)], a(n) * a(n) = A063524(n) = A000007(n - 1) for n >= 1 (identity function for Dirichlet convolution), where operation * denotes Dirichlet convolution for n >= 1, b(n) is any function. Dirichlet convolution of functions a(n), b(n) is function c(n) = a(n) * b(n) = Sum_{d|n} a(d)*b(n/d). %C A159075 a(n) = the sum of the cranks of all partitions of n. - _Michael Somos_, Nov 10 2013 %H A159075 Wikipedia, <a href="http://en.wikipedia.org/wiki/Crank_of_a_partition">Crank of a partition</a> %H A159075 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1). %F A159075 G.f.: -x. %F A159075 Sum_{d|n} a(d)*a(n/d) = Sum_{1<=k<=n} a(k)*a(n-k+1) = A063524(n) = A000007(n - 1) for n >= 1. Sum_{d|n} a(d)*a(d) = Sum_{1<=k<=n} a(k)*a(k) = A000012(n) for n >= 1. Sum_{d|n} a(d)*b(n/d) = Sum_{1<=k<=n} a(k)*b(n-k+1) = -[b(n)] for any function b(n) and n >= 1. Sum_{d|n} a(d)*b(d) = Sum_{1<=k<=n} a(k)*b(k) = A057428(n) for any function b(n) with Abs[b(1)] >= 1 and n >= 1. a(n) = (-1) * A063524(n). a(n) = (-1) * A000007(n - 1) for n >= 1. Abs[a(n)] = A063524(n). Abs[a(n)] = A000007(n - 1) for n >= 1. %t A159075 a[ n_] := -Boole[n == 1] (* _Michael Somos_, Nov 10 2013 *) %t A159075 PadRight[{0,-1},120,0] (* _Harvey P. Dale_, Jan 24 2019 *) %o A159075 (PARI) {a(n) = -(n == 1)} /* _Michael Somos_, Nov 10 2013 */ %Y A159075 Cf. A000004, A063524, A000007, A000012, A057428. %K A159075 sign %O A159075 0,1 %A A159075 _Jaroslav Krizek_, Apr 04 2009 %E A159075 Edited by _N. J. A. Sloane_, Apr 09 2009