This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159232 #12 Sep 08 2022 08:45:43 %S A159232 1,8,-98,-3376,20620,2352608,2118664,-2269785664,-20560850288, %T A159232 2777155418240,52194963065824,-4081432073022208,-125662880767476032, %U A159232 6929000903815364096,320078034126827436160,-13154349776838626280448,-883024421142899680112384 %N A159232 Numerator of Hermite(n, 4/9). %H A159232 G. C. Greubel, <a href="/A159232/b159232.txt">Table of n, a(n) for n = 0..450</a> %F A159232 From _G. C. Greubel_, Jun 28 2018: (Start) %F A159232 a(n) = 9^n * Hermite(n, 4/9). %F A159232 E.g.f.: exp(8*x-81*x^2). %F A159232 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/9)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159232 Numerator[Table[HermiteH[n,4/9],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 02 2011*) %o A159232 (PARI) a(n)=numerator(polhermite(n,4/9)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159232 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/9)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 28 2018 %Y A159232 Cf. A159030, A159197. %K A159232 sign,frac %O A159232 0,2 %A A159232 _N. J. A. Sloane_, Nov 12 2009