This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159247 #22 Oct 21 2024 15:17:20 %S A159247 1,1,-49,-149,7201,37001,-1763249,-12863549,604273601,5749693201, %T A159247 -266173427249,-3141020027749,143254364959201,2027866381608601, %U A159247 -91087470841872049,-1510593937967892749,66805009193436144001,1275280159567750343201,-55508977654852972057649 %N A159247 Numerator of Hermite(n, 1/10). %H A159247 G. C. Greubel, <a href="/A159247/b159247.txt">Table of n, a(n) for n = 0..450</a> (terms 0..100 from T. D. Noe) %F A159247 From _G. C. Greubel_, Jun 10 2018: (Start) %F A159247 a(n) = 5^n * Hermite(n,1/10). %F A159247 E.g.f.: exp(x-25*x^2). %F A159247 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/5)^(n-2*k)/(k!*(n-2*k)!)). (End) %F A159247 a(n) = 50*(1-n)*a(n-2)+a(n-1) for n>1. - _Christian Krause_, Oct 21 2024 %t A159247 Numerator[Table[HermiteH[n,1/10],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 02 2011*) %o A159247 (PARI) a(n)=numerator(polhermite(n,1/10)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159247 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 10 2018 %Y A159247 Cf. A158811, A158954, A158960. %K A159247 sign,frac %O A159247 0,3 %A A159247 _N. J. A. Sloane_, Nov 12 2009