This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159249 #11 Sep 08 2022 08:45:43 %S A159249 1,3,-41,-423,4881,99243,-922521,-32540463,225260961,13691968083, %T A159249 -60291528201,-7026858626103,12079764632241,4252354469558523, %U A159249 4905216397718919,-2961932479497809343,-12564709736782617279,2331851854387899622563,17675558839428923554839 %N A159249 Numerator of Hermite(n, 3/10). %H A159249 G. C. Greubel, <a href="/A159249/b159249.txt">Table of n, a(n) for n = 0..450</a> %F A159249 From _G. C. Greubel_, Jun 02 2018: (Start) %F A159249 a(n) = 5^n * Hermite(n, 3/10). %F A159249 E.g.f.: exp(3*x-25*x^2). %F A159249 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(3/5)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159249 Numerator[Table[HermiteH[n,3/10],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %o A159249 (PARI) a(n)=numerator(polhermite(n,3/10)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159249 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(3/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 28 2018 %Y A159249 Cf. A159247. %K A159249 sign,frac %O A159249 0,2 %A A159249 _N. J. A. Sloane_, Nov 12 2009