This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159252 #11 Sep 08 2022 08:45:43 %S A159252 1,7,-1,-707,-4799,107807,1954399,-18661307,-814668799,1761841207, %T A159252 378933847999,1771616332493,-196012302071999,-2435055913999793, %U A159252 110362604948800799,2477077374441460693,-65432412090510374399,-2439688784186741175193 %N A159252 Numerator of Hermite(n, 7/10). %H A159252 G. C. Greubel, <a href="/A159252/b159252.txt">Table of n, a(n) for n = 0..450</a> %F A159252 From _G. C. Greubel_, Jun 28 2018: (Start) %F A159252 a(n) = 5^n * Hermite(n, 7/10). %F A159252 E.g.f.: exp(7*x-25*x^2). %F A159252 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/5)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159252 Numerator[Table[HermiteH[n,7/10],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %o A159252 (PARI) a(n)=numerator(polhermite(n,7/10)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159252 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(7/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 28 2018 %Y A159252 Cf. A159247. %K A159252 sign,frac %O A159252 0,2 %A A159252 _N. J. A. Sloane_, Nov 12 2009