This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159279 #12 Sep 08 2022 08:45:43 %S A159279 1,9,31,-621,-10239,32049,2848191,16019019,-852695679,-14081868711, %T A159279 256976237151,9353720489859,-57153446024319,-6126613308134271, %U A159279 -17989779857401089,4126721296977379899,50632826565847235841,-2845681598489278796631 %N A159279 Numerator of Hermite(n, 9/10). %H A159279 G. C. Greubel, <a href="/A159279/b159279.txt">Table of n, a(n) for n = 0..450</a> %F A159279 From _G. C. Greubel_, Jun 27 2018: (Start) %F A159279 a(n) = 5^n * Hermite(n, 9/10). %F A159279 E.g.f.: exp(9*x - 25*x^2). %F A159279 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(9/5)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159279 Numerator[Table[HermiteH[n,3/10],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %t A159279 Table[5^n*HermiteH[n, 9/10], {n,0,30}] (* _G. C. Greubel_, Jun 27 2018 *) %o A159279 (PARI) a(n)=numerator(polhermite(n,9/10)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159279 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(9/5)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 27 2018 %Y A159279 Cf. A159247. %K A159279 sign,frac %O A159279 0,2 %A A159279 _N. J. A. Sloane_, Nov 12 2009