This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159280 #19 Sep 08 2022 08:45:43 %S A159280 1,2,-238,-1444,169900,1737592,-202103816,-2927191216,336509481872, %T A159280 6340061157920,-720237529201376,-16783423060569152, %U A159280 1883705456612924608,52506471481118666624,-5821124423542023483520,-189534174225114089489152,20751613309007317066199296 %N A159280 Numerator of Hermite(n, 1/11). %H A159280 T. D. Noe, <a href="/A159280/b159280.txt">Table of n, a(n) for n = 0..100</a> %F A159280 From _G. C. Greubel_, Jun 08 2018: (Start) %F A159280 a(n) = 11^n * Hermite(n,1/11). %F A159280 E.g.f.: exp(2*x-121*x^2). %F A159280 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/11)^(n-2k)/(k!*(n-2k)!). (End) %t A159280 Numerator[Table[HermiteH[n,1/11],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %o A159280 (PARI) a(n)=polhermite(n,1/11)*11^n \\ _Charles R Greathouse IV_, Jun 20 2012 %o A159280 (PARI) a(n)=numerator(polhermite(n,1/11)) \\ _G. C. Greubel_, Jun 08 2018 %o A159280 (Python) %o A159280 from sympy import hermite %o A159280 def a(n): return hermite(n, 1/11)*11**n # _Indranil Ghosh_, May 26 2017 %o A159280 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/22)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 08 2018 %Y A159280 The denominators are A001020. %K A159280 sign,frac %O A159280 0,2 %A A159280 _N. J. A. Sloane_, Nov 12 2009