This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159281 #16 Sep 08 2022 08:45:43 %S A159281 1,4,-226,-2840,152716,3359984,-171346424,-5564082464,268004512400, %T A159281 11844081699904,-536337501207584,-30808027718598016, %U A159281 1304498317340196544,94684505764169424640,-3725213683295580628864,-335691960262188333195776,12179757829314204349993216 %N A159281 Numerator of Hermite(n, 2/11). %C A159281 Denominator is 11^n. - _Robert Israel_, May 21 2014 %H A159281 G. C. Greubel, <a href="/A159281/b159281.txt">Table of n, a(n) for n = 0..434</a> (terms 0..82 from Robert Israel) %F A159281 a(n) = 4*a(n-1) - 242*(n-1)*a(n-2) for n >= 2. %F A159281 E.g.f.: exp(-11*x^2 + 4*x). - _Robert Israel_, May 21 2014 %F A159281 From _G. C. Greubel_, Jun 27 2018: (Start) %F A159281 a(n) = 11^n * Hermite(n, 2/11). %F A159281 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(4/11)^(n-2*k)/(k!*(n-2*k)!)). (End) %p A159281 N:= 30; # to get a(n) for n <= N %p A159281 A159281[0]:= 1: %p A159281 A159281[1]:= 4: %p A159281 for n from 2 to N do %p A159281 A159281[n]:= 4*A159281[n-1] - 242*(n-1)*A159281[n-2] %p A159281 od: %p A159281 seq(A159281[n],n=0..N); # _Robert Israel_, May 21 2014 %t A159281 Numerator[Table[HermiteH[n,2/11],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %o A159281 (PARI) a(n)=numerator(polhermite(n,2/11)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159281 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(4/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 27 2018 %Y A159281 Cf. A159280. %K A159281 sign,frac %O A159281 0,2 %A A159281 _N. J. A. Sloane_, Nov 12 2009