This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159292 #29 Apr 28 2024 11:31:10 %S A159292 10124389567,10124563789,10124597683,10124635897,10124673859, %T A159292 10124687359,10124695783,10124735689,10124795683,10124867359, %U A159292 10124958673,10124965387,10124965783,10125364897,10125693847,10125749863,10125784639,10125938467,10126387549,10126457893,10126498573 %N A159292 Pandigital emirps. %C A159292 There are 413842 11-digit terms. - _Jud McCranie_, Jul 03 2013 [in light of the comment below, this was independently computed and confirmed to be correct by _Michael S. Branicky_, Apr 06 2024] %C A159292 The above statement [by _Jud McCranie_] is uncertain, as the contributed b-file was wrong (missing terms) from a(436) on. At this point, one has to consider permutations of 10223456789, before coming back, for n > 495, to permutations of 10123456789 starting with 10231.... - _M. F. Hasler_, Apr 06 2024 %H A159292 Michael S. Branicky, <a href="/A159292/b159292.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..435 from Jud McCranie, terms 436..500 corrected and added by M. F. Hasler) %F A159292 Intersection of A006567 and A050288. - _M. F. Hasler_, Apr 05 2024 %o A159292 (PARI) L=List(); append(N=10123456789, M=Vecsmall([2,3,3]))=forperm(digits(N),p, cmp(p[3..5],M)>0 && break; isprime(P=fromdigits(Vec(p)))&& isprime(fromdigits(Vecrev(p)))&& listput(L, P)) %o A159292 append(); append(10223456789); #A159292=Set(L) \\ _M. F. Hasler_, Apr 05 2024 %o A159292 (Python) %o A159292 from sympy import isprime %o A159292 from itertools import count, islice, product %o A159292 def emirp(s): %o A159292 r = s[::-1] %o A159292 return r != s and isprime(int(s)) and isprime(int(r)) %o A159292 def agen(): # generator of terms %o A159292 for d in count(11): %o A159292 for f in "1379": %o A159292 for m in product("0123456789", repeat=d-2): %o A159292 for e in "1379": %o A159292 t = f + "".join(m) + e %o A159292 if len(set(t)) == 10 and emirp(t): %o A159292 yield int(t) %o A159292 print(list(islice(agen(), 100))) # _Michael S. Branicky_, Apr 09 2024 %Y A159292 Cf. A006567 (emirps), A050288 (pandigital primes). %K A159292 nonn,base %O A159292 1,1 %A A159292 _Lekraj Beedassy_, Apr 08 2009 %E A159292 Erroneous terms corrected and more terms from _M. F. Hasler_, Apr 05 2024