cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159296 a(n) is the smaller number in the pair (L,m) which minimizes the primes of the form L^2 + m^2 under the constraint L + m = 2n + 1.

This page as a plain text file.
%I A159296 #6 Aug 20 2017 23:17:58
%S A159296 1,2,2,4,5,5,7,7,9,8,10,12,10,14,11,14,17,15,19,18,20,22,22,24,25,25,
%T A159296 23,26,29,30,29,32,30,34,35,34,34,37,39,31,40,42,41,40,43,44,47,45,40,
%U A159296 50,50,47,51,52,53,55,54,56,55,60,59,61,62,55,65,65,64,66,69,70,64,72,67,72,65
%N A159296 a(n) is the smaller number in the pair (L,m) which minimizes the primes of the form L^2 + m^2 under the constraint L + m = 2n + 1.
%C A159296 1) It is known that this sequence is infinite.
%C A159296 2) L and m with odd sum L + m are necessarily coprime if L^2 + M^2 is prime.
%C A159296 3) The "singular" case m = L = 1, L + m = 2 (even) with 1^2 + 1^2 = 2 is skipped. It would define a(0)=1.
%C A159296 4) a(n) <= n.
%C A159296 It has not been proved that a(n) exists for all n. See A036468. [_T. D. Noe_, Apr 22 2009]
%e A159296 n=1: 1^2 + 2^2 = 5; a(1)=1.
%e A159296 n=2: 2^2 + 3^2 = 13 < 1^2 + 4^2 = 17; a(2)=2.
%e A159296 n=3: 2^2 + 5^2 = 29 < 1^2 + 6^2 = 37. 3^2 + 4^2 = 5^2 not prime; a(3)=2.
%e A159296 n=27: 23^2 + 32^2 = 1553 < 1597, 1657, 1693, 1733, 1777, 1877, 1933, 1993, 2273, 2437, 2617, 2713, 2917, a(27)=23.
%p A159296 A159296 := proc(n) local a,pmin,l,m ; a := 0 ; pmin := 2*(2*n+1)^2 ; for l from 1 to n do m := 2*n+1-l ; if isprime(m^2+l^2) then if m^2+l^2 < pmin then pmin := m^2+l^2 ; a := l ; fi; fi; od: RETURN(a) ; end: seq(A159296(n),n=1..80) ; # _R. J. Mathar_, Apr 18 2009
%Y A159296 Cf. A145354, A157884.
%K A159296 easy,nonn
%O A159296 1,2
%A A159296 Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 09 2009
%E A159296 Edited and extended by _R. J. Mathar_, Apr 18 2009