A159297 Number of 3D matrices with positive integer entries such that sum of all entries equals n.
1, 4, 10, 25, 58, 130, 286, 620, 1329, 2827, 5977, 12559, 26227, 54493, 112849, 233272, 481616, 992955, 2043238, 4194649, 8591014, 17559133, 35833948, 73054885, 148849186, 303171755, 617306563, 1256452642, 2555937826
Offset: 1
Keywords
Examples
For n=3, the 10 possible matrices are: 3 (1*1*1); (1,2) as three different vectors (1*1*2, 1*2*1, 2*1*1); (2,1) as three different vectors (1*1*2, 1*2*1, 2*1*1); and (1,1,1) as three different vectors (1*1*3, 1*3*1, 3*1*1). [Typo corrected by _Joel B. Lewis_, Apr 04 2011]
Crossrefs
Cf. A101509
Programs
-
Mathematica
Table[Sum[Sum[Sum[Binomial[n - 1, i*j*k - 1], {i, 1, n}], {j, 1, n}], {k, 1, n}], {n, 1, 40}] (* Joel B. Lewis, May 07 2009 *)
Formula
a(n) = sum(C(n - 1, ijk - 1)) where the sum is over all triples (i, j, k) such that 0 < i, j, k and ijk <= n. [Joel B. Lewis, May 07 2009]
Extensions
More terms from Joel B. Lewis, May 07 2009
Comments