This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159307 #22 Sep 08 2022 08:45:43 %S A159307 1,6,-206,-4140,124716,4755816,-122371464,-7639673616,161459218320, %T A159307 15759163430496,-257103196917984,-39679794683308224, %U A159307 446329942095824064,117908103412902026880,-696705377356050344064,-403652886627048369133824,107123200040172534149376 %N A159307 Numerator of Hermite(n, 3/11). %H A159307 G. C. Greubel, <a href="/A159307/b159307.txt">Table of n, a(n) for n = 0..434</a> %F A159307 From _G. C. Greubel_, Jun 26 2018: (Start) %F A159307 a(n) = 11^n * Hermite(n,6/11). %F A159307 E.g.f.: exp(6*x - 121*x^2). %F A159307 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/11)^(n-2*k)/(k!*(n-2*k)!)). (End) %F A159307 a(n) = 6*a(n-1) - 242*(n-1)*a(n-2) for n>1. - _Vincenzo Librandi_, Jun 27 2018 [corrected by _Georg Fischer_, Dec 23 2019] %t A159307 Numerator[Table[HermiteH[n,3/11],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %o A159307 (PARI) a(n)=numerator(polhermite(n,3/11)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159307 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 26 2018 %o A159307 (Magma) I:=[1, 6]; [n le 2 select I[n] else 6*Self(n-1)-242*(n-2)*Self(n-2): n in [1..25]]; // _Vincenzo Librandi_, Jan 27 2018 %Y A159307 Cf. A159280. %K A159307 sign,frac %O A159307 0,2 %A A159307 _N. J. A. Sloane_, Nov 12 2009