cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159324 n! times the average number of comparisons required by an insertion sort of n (distinct) elements.

This page as a plain text file.
%I A159324 #43 Jun 01 2021 11:59:41
%S A159324 0,0,2,16,118,926,7956,75132,777456,8771184,107307360,1416252960,
%T A159324 20068629120,304002322560,4903642679040,83928856838400,
%U A159324 1519397749094400,29010025797580800,582647327132774400,12280347845905305600,271030782903552000000,6251213902855219200000
%N A159324 n! times the average number of comparisons required by an insertion sort of n (distinct) elements.
%H A159324 Alois P. Heinz, <a href="/A159324/b159324.txt">Table of n, a(n) for n = 0..448</a>
%H A159324 Wikipedia, <a href="https://en.wikipedia.org/wiki/Insertion_sort">Insertion sort</a>
%H A159324 <a href="/index/So#sorting">Index entries for sequences related to sorting</a>
%F A159324 a(n) = a(n-1)*(n) + n! *(n+1)/2 - (n-1)!.
%F A159324 a(n) = Sum_k A159323(n,k) = Sum_k A129178(n,k) * (n(n-1)/2 - k).
%F A159324 a(n) = n!/4 *(n^2+3*n-4*H(n)), where H(n) = Sum_{k=1..n} 1/k. - _Gary Detlefs_, Sep 02 2010
%F A159324 a(n) = A138772(n+1) - A000254(n). - _Gary Detlefs_, May 13 2012
%F A159324 a(n) = ((2*n^3-n^2-5*n+2)*a(n-1)-(n+2)*(n-1)^3*a(n-2))/((n-2)*(n+1)) for n>2. - _Alois P. Heinz_, Dec 16 2016
%F A159324 a(n) = 2 * A285231(n+1). - _Alois P. Heinz_, Apr 15 2017
%e A159324 For n=3, insertion sorting 123, 213, 213, 231, 312, 321 takes 3+3+3+2+3+2 = 4*3+2*2 = 16 comparisons.
%p A159324 a:= proc(n) option remember;
%p A159324       `if`(n<2, 0, a(n-1)*n + (n-1)! * (n-1)*(n+2)/2)
%p A159324     end:
%p A159324 seq(a(n), n=0..30); # _Alois P. Heinz_, May 14 2012
%p A159324 # second Maple program:
%p A159324 a:= proc(n) option remember; `if`(n<3, [0$2, 2][n+1],
%p A159324       ((2*n^3-n^2-5*n+2)*a(n-1)-(n+2)*(n-1)^3*a(n-2))/((n-2)*(n+1)))
%p A159324     end:
%p A159324 seq(a(n), n=0..30); # _Alois P. Heinz_, Dec 16 2016
%t A159324 a[n_] := n! ((n+1)(n+2)/4 - HarmonicNumber[n] - 1/2); Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Apr 12 2017, after _Gary Detlefs_ *)
%Y A159324 Row sums of triangle A159323.
%Y A159324 Cf. A000254, A001008, A002805, A138772, A212395, A285231.
%K A159324 nonn
%O A159324 0,3
%A A159324 Harmen Wassenaar (towr(AT)ai.rug.nl), Apr 10 2009