cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159353 a(n) = the smallest positive integer such that a(n)*(2^n - 2) is a multiple of n.

This page as a plain text file.
%I A159353 #24 Jun 27 2024 08:55:18
%S A159353 1,1,1,2,1,3,1,4,3,5,1,6,1,7,5,8,1,9,1,10,7,11,1,12,5,13,9,2,1,15,1,
%T A159353 16,11,17,35,18,1,19,13,20,1,21,1,22,3,23,1,24,7,25,17,26,1,27,55,28,
%U A159353 19,29,1,30,1,31,21,32,13,33,1,34,23,5,1,36,1,37,25,38,77,39,1,40,27,41,1,42
%N A159353 a(n) = the smallest positive integer such that a(n)*(2^n - 2) is a multiple of n.
%C A159353 This is not the same as sequence A032742, where A032742(n) = the largest proper divisor of n. See A146077 for indices at which A032742 and this sequence differ.
%H A159353 Michael De Vlieger, <a href="/A159353/b159353.txt">Table of n, a(n) for n = 1..10000</a>
%F A159353 a(n) = denominator((2^n - 2)/n). - _Juri-Stepan Gerasimov_, Sep 09 2014
%t A159353 Array[Block[{k = 1}, While[! Divisible[k (2^# - 2), #], k++]; k] &, 84] (* _Michael De Vlieger_, Oct 30 2017 *)
%o A159353 (Magma) [Denominator((2^n-2)/n): n in [1..84]]; // _Juri-Stepan Gerasimov_, Sep 09 2014
%o A159353 (PARI) a(n)=my(k=1);while((2^n-2)*k%n != 0,k++);return(k) \\ _Edward Jiang_, Sep 09 2014
%o A159353 (PARI) a(n)=denominator(lift(Mod(2,n)^n-2)/n) \\ _Charles R Greathouse IV_, Sep 11 2014
%Y A159353 Cf. A000918, A146077.
%K A159353 nonn
%O A159353 1,4
%A A159353 _Leroy Quet_, Apr 11 2009
%E A159353 Extended by _Ray Chandler_, Apr 11 2009