cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159355 Number of n X n arrays of squares of integers summing to 4.

Original entry on oeis.org

5, 135, 1836, 12675, 58941, 211925, 635440, 1663821, 3921325, 8495531, 17179020, 32795295, 59626581, 103962825, 174792896, 284660665, 450710325, 695946991, 1050740300, 1554600411, 2258257485, 3226077405, 4538848176, 6296973125, 8624108701, 11671286355
Offset: 2

Views

Author

R. H. Hardin, Apr 11 2009

Keywords

Comments

Each array either has four 1's or one 4, and all other elements 0. - Robert Israel, Jun 19 2018

Crossrefs

Programs

  • Maple
    seq(binomial(n^2,4)+n^2, n=2..100);
  • PARI
    Vec(x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9 + O(x^40)) \\ Colin Barker, Jun 19 2018

Formula

Empirical: n^2*(n^2+1)*(n^4-7*n^2+18)/24. - R. J. Mathar, Aug 11 2009
From Robert Israel, Jun 19 2018: (Start)
Empirical formula confirmed.
a(n) = binomial(n^2,4)+n^2 = A014626(n^2).
(End)
From Colin Barker, Jun 19 2018: (Start)
G.f.: x^2*(5 + 90*x + 801*x^2 + 591*x^3 + 252*x^4 - 88*x^5 + 37*x^6 - 9*x^7 + x^8) / (1 - x)^9.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>10.
(End)