cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159363 Number of n X n arrays of squares of integers summing to 6.

This page as a plain text file.
%I A159363 #20 Dec 22 2023 10:23:14
%S A159363 12,336,9688,184000,1969212,14039088,75099360,324796176,1192537500,
%T A159363 3844187424,11144826264,29583574384,72891000364,168494340000,
%U A159363 368541092736,768025638240,1533632745708,2948331631152,5478589599000,9873410641248,17307337994716,29583198551632
%N A159363 Number of n X n arrays of squares of integers summing to 6.
%C A159363 All such sequences have holonomic recurrences (cf. comment in A159359). - _Georg Fischer_, Feb 17 2022
%H A159363 R. H. Hardin, <a href="/A159363/b159363.txt">Table of n, a(n) for n = 2..100</a>
%H A159363 <a href="/index/Rec#order_13">Index entries for linear recurrences with constant coefficients</a>, signature (13, -78, 286, -715, 1287, -1716, 1716, -1287, 715, -286, 78, -13, 1).
%F A159363 Empirical g.f.: -4*x^2*(1+x)*(3 + 42*x + 1522*x^2 + 18686*x^3 + 42654*x^4 + 18686*x^5 + 1522*x^6 + 42*x^7 + 3*x^8)/(-1+x)^13. - _Vaclav Kotesovec_, Nov 30 2012
%p A159363 C:=binomial; seq(n^2*C(n^2-1,2)+C(n^2,6),n=2..22); # _Georg Fischer_, Feb 18 2022
%t A159363 RecurrenceTable[{a[n-1] * (600*n+600*n^2-206*n^3-206*n^4-71*n^5-71*n^6+14*n^7+14*n^8-n^9-n^10) + a[n] * (-672-232*n+2424*n^2-2090*n^3+492*n^4+203*n^5-125*n^6-30*n^7+40*n^8-11*n^9+n^10) == 0, a[2]==12}, a[n], {n,2,20}] (* _Georg Fischer_, Feb 18 2022 *)
%Y A159363 Cf. A159355-A159446.
%K A159363 nonn,easy
%O A159363 2,1
%A A159363 _R. H. Hardin_, Apr 11 2009