This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159449 #11 Sep 08 2022 08:45:43 %S A159449 1,12,-98,-6984,-12660,6608592,94621704,-8460215136,-261811748208, %T A159449 13237235524800,729072813894624,-23285236203280512, %U A159449 -2220214665026855232,40977749954004344064,7476528335622538688640,-49114276816696253425152,-27729169180110170480865024 %N A159449 Numerator of Hermite(n, 6/11). %H A159449 G. C. Greubel, <a href="/A159449/b159449.txt">Table of n, a(n) for n = 0..435</a> %F A159449 From _G. C. Greubel_, Jun 15 2018: (Start) %F A159449 a(n) = 11^n * Hermite(n,6/11). %F A159449 E.g.f.: exp(12*x-121*x^2). %F A159449 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/11)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159449 Numerator[Table[HermiteH[n,6/11],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %o A159449 (PARI) a(n)=numerator(polhermite(n,6/11)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159449 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 15 2018 %Y A159449 Cf. A159280. %K A159449 sign,frac %O A159449 0,2 %A A159449 _N. J. A. Sloane_, Nov 12 2009