cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159450 Numerator of Hermite(n, 7/11).

This page as a plain text file.
%I A159450 #11 Sep 08 2022 08:45:43
%S A159450 1,14,-46,-7420,-70484,6195784,172026616,-6587905744,-383643767920,
%T A159450 7383172769504,938940545302816,-4722110467960256,-2565569278147539776,
%U A159450 -22204961095108973440,7760411493720634507136,183876169102318085114624,-25596027354773450069298944
%N A159450 Numerator of Hermite(n, 7/11).
%H A159450 G. C. Greubel, <a href="/A159450/b159450.txt">Table of n, a(n) for n = 0..435</a>
%F A159450 From _G. C. Greubel_, Jun 15 2018: (Start)
%F A159450 a(n) = 11^n * Hermite(n,7/11).
%F A159450 E.g.f.: exp(14*x-121*x^2).
%F A159450 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/11)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A159450 Numerator[Table[HermiteH[n,7/11],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *)
%o A159450 (PARI) a(n)=numerator(polhermite(n,7/11)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159450 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(14/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 15 2018
%Y A159450 Cf. A159280.
%K A159450 sign,frac
%O A159450 0,2
%A A159450 _N. J. A. Sloane_, Nov 12 2009