This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159454 #11 Sep 08 2022 08:45:43 %S A159454 1,16,14,-7520,-130484,5191616,240951496,-3683002496,-467099874160, %T A159454 -343305154304,1011850643451616,17020408768641536, %U A159454 -2421219872569937216,-88166785025254016000,6206489158700958225536,398012894204775937816576,-16161349338808063353630464 %N A159454 Numerator of Hermite(n, 8/11). %H A159454 G. C. Greubel, <a href="/A159454/b159454.txt">Table of n, a(n) for n = 0..434</a> %F A159454 From _G. C. Greubel_, Jun 15 2018: (Start) %F A159454 a(n) = 11^n * Hermite(n,8/11). %F A159454 E.g.f.: exp(16*x-121*x^2). %F A159454 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(16/11)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159454 Numerator[Table[HermiteH[n,8/11],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 12 2011 *) %o A159454 (PARI) a(n)=numerator(polhermite(n,8/11)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159454 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(16/11)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 15 2018 %Y A159454 Cf. A159280. %K A159454 sign,frac %O A159454 0,2 %A A159454 _N. J. A. Sloane_, Nov 12 2009