This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159472 #13 Sep 08 2022 08:45:43 %S A159472 1,1,-71,-215,15121,77041,-5366519,-38648231,2666077345,24927458401, %T A159472 -1702690661159,-19650460709879,1328880542928049,18306878596263505, %U A159472 -1225525309584390359,-19678858934618003399,1303888475416523584321,23973933968096463499969 %N A159472 Numerator of Hermite(n, 1/12). %H A159472 T. D. Noe, <a href="/A159472/b159472.txt">Table of n, a(n) for n = 0..100</a> %F A159472 From _G. C. Greubel_, Jun 15 2018: (Start) %F A159472 a(n) = 6^n * Hermite(n,1/12). %F A159472 E.g.f.: exp(x-36*x^2). %F A159472 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(1/6)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159472 Numerator[Table[HermiteH[n,1/12],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *) %o A159472 (PARI) a(n)=numerator(polhermite(n,1/12)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159472 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(1/6)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 15 2018 %Y A159472 Cf. A159280. %K A159472 sign,frac %O A159472 0,3 %A A159472 _N. J. A. Sloane_, Nov 12 2009