cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159480 Numerator of Hermite(n, 5/12).

This page as a plain text file.
%I A159480 #12 Sep 08 2022 08:45:43
%S A159480 1,5,-47,-955,5377,301925,-426095,-132562075,-448058495,74115462725,
%T A159480 660919218385,-50058537070075,-773740706311295,39381872496988325,
%U A159480 921130663592313745,-35091274159002662875,-1170277487474712158975,34573760393797506837125
%N A159480 Numerator of Hermite(n, 5/12).
%H A159480 G. C. Greubel, <a href="/A159480/b159480.txt">Table of n, a(n) for n = 0..450</a>
%F A159480 From _G. C. Greubel_, Jun 12 2018: (Start)
%F A159480 a(n) = 6^n * Hermite(n,5/12).
%F A159480 E.g.f.: exp(5*x-36*x^2).
%F A159480 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/6)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A159480 Numerator[Table[HermiteH[n,5/12],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *)
%o A159480 (PARI) a(n)=numerator(polhermite(n,5/12)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159480 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(5/6)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018
%Y A159480 Cf. A159280.
%K A159480 sign,frac
%O A159480 0,2
%A A159480 _N. J. A. Sloane_, Nov 12 2009