This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159480 #12 Sep 08 2022 08:45:43 %S A159480 1,5,-47,-955,5377,301925,-426095,-132562075,-448058495,74115462725, %T A159480 660919218385,-50058537070075,-773740706311295,39381872496988325, %U A159480 921130663592313745,-35091274159002662875,-1170277487474712158975,34573760393797506837125 %N A159480 Numerator of Hermite(n, 5/12). %H A159480 G. C. Greubel, <a href="/A159480/b159480.txt">Table of n, a(n) for n = 0..450</a> %F A159480 From _G. C. Greubel_, Jun 12 2018: (Start) %F A159480 a(n) = 6^n * Hermite(n,5/12). %F A159480 E.g.f.: exp(5*x-36*x^2). %F A159480 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(5/6)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159480 Numerator[Table[HermiteH[n,5/12],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *) %o A159480 (PARI) a(n)=numerator(polhermite(n,5/12)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159480 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(5/6)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018 %Y A159480 Cf. A159280. %K A159480 sign,frac %O A159480 0,2 %A A159480 _N. J. A. Sloane_, Nov 12 2009