This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159485 #12 Sep 08 2022 08:45:43 %S A159485 1,7,-23,-1169,-3215,314167,3356569,-112224161,-2477279903, %T A159485 47300157415,1936378479049,-20501463985457,-1677122003305007, %U A159485 5973410860299799,1611600071115585145,5260002350626898623,-1703708060350443666239,-17985479130375292877369 %N A159485 Numerator of Hermite(n, 7/12). %H A159485 G. C. Greubel, <a href="/A159485/b159485.txt">Table of n, a(n) for n = 0..450</a> %F A159485 From _G. C. Greubel_, Jun 12 2018: (Start) %F A159485 a(n) = 6^n * Hermite(n,7/12). %F A159485 E.g.f.: exp(7*x-36*x^2). %F A159485 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(7/6)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159485 Numerator[Table[HermiteH[n,7/12],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *) %o A159485 (PARI) a(n)=numerator(polhermite(n,7/12)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159485 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(7/6)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018 %Y A159485 Cf. A159280. %K A159485 sign,frac %O A159485 0,2 %A A159485 _N. J. A. Sloane_, Nov 12 2009