This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159486 #12 Sep 08 2022 08:45:43 %S A159486 1,11,49,-1045,-22079,58091,8587441,69366539,-3565038335,-79170548149, %T A159486 1439268811441,72834751593131,-338718631136831,-66655130318970325, %U A159486 -416165794764599759,62610547619111490251,1138175082155994132481,-59607424953500501311861 %N A159486 Numerator of Hermite(n, 11/12). %H A159486 G. C. Greubel, <a href="/A159486/b159486.txt">Table of n, a(n) for n = 0..450</a> %F A159486 From _G. C. Greubel_, Jun 12 2018: (Start) %F A159486 a(n) = 6^n * Hermite(n,11/12). %F A159486 E.g.f.: exp(11*x-36*x^2). %F A159486 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(11/6)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159486 Numerator[Table[HermiteH[n,11/12],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *) %o A159486 (PARI) a(n)=numerator(polhermite(n,11/12)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159486 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(11/6)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018 %Y A159486 Cf. A159280. %K A159486 sign,frac %O A159486 0,2 %A A159486 _N. J. A. Sloane_, Nov 12 2009