cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159488 Numerator of Hermite(n, 1/13).

This page as a plain text file.
%I A159488 #13 Sep 08 2022 08:45:43
%S A159488 1,2,-334,-2020,334636,3400312,-558734216,-8013301168,1305938552720,
%T A159488 24279843463712,-3924105390446816,-89914081688240192,
%U A159488 14409995678304781504,393511506684111781760,-62530497997102986365056,-1987157445623422924018432,313055309954065295022797056
%N A159488 Numerator of Hermite(n, 1/13).
%H A159488 G. C. Greubel, <a href="/A159488/b159488.txt">Table of n, a(n) for n = 0..422</a>
%F A159488 From _G. C. Greubel_, Jun 08 2018: (Start)
%F A159488 a(n) = 13^n * Hermite(n,1/13).
%F A159488 E.g.f.: exp(2*x-169*x^2).
%F A159488 a(n) = Sum_{k=0..floor(n/2)} (-1)^k*n!*(2/13)^(n-2k)/(k!*(n-2k)!). (End)
%t A159488 Numerator[Table[HermiteH[n,1/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *)
%o A159488 (PARI) a(n)=numerator(polhermite(n,1/13)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159488 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(2/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 08 2018
%Y A159488 Cf. A159280.
%K A159488 sign,frac
%O A159488 0,2
%A A159488 _N. J. A. Sloane_, Nov 12 2009