cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159494 Numerator of Hermite(n, 3/13).

This page as a plain text file.
%I A159494 #12 Sep 08 2022 08:45:43
%S A159494 1,6,-302,-5868,271020,9559656,-400665864,-21790977552,817229568912,
%T A159494 63826180714080,-2103055264345824,-228350822399665344,
%U A159494 6449054538439781568,964885262883681324672,-22547834064602312261760,-4701124068353193901918464,86110774297414559755612416
%N A159494 Numerator of Hermite(n, 3/13).
%H A159494 G. C. Greubel, <a href="/A159494/b159494.txt">Table of n, a(n) for n = 0..422</a>
%F A159494 From _G. C. Greubel_, Jun 12 2018: (Start)
%F A159494 a(n) = 13^n * Hermite(n,3/13).
%F A159494 E.g.f.: exp(6*x-169*x^2).
%F A159494 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(6/13)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A159494 Numerator[Table[HermiteH[n,3/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *)
%o A159494 (PARI) a(n)=numerator(polhermite(n,3/13)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159494 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(6/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018
%Y A159494 Cf. A159280, A159488.
%K A159494 sign,frac
%O A159494 0,2
%A A159494 _N. J. A. Sloane_, Nov 12 2009