This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159496 #12 Sep 08 2022 08:45:43 %S A159496 1,8,-274,-7600,217036,12011488,-270698936,-26524889152,428274569360, %T A159496 75149496821888,-701615265418016,-259618221381325568, %U A159496 531659785773578944,1057264784208845135360,6122005174981655202944,-4954000917476401938899968,-70670573576968207390125824 %N A159496 Numerator of Hermite(n, 4/13). %H A159496 G. C. Greubel, <a href="/A159496/b159496.txt">Table of n, a(n) for n = 0..422</a> %F A159496 From _G. C. Greubel_, Jun 12 2018: (Start) %F A159496 a(n) = 13^n * Hermite(n,4/13). %F A159496 E.g.f.: exp(8*x-169*x^2). %F A159496 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(8/13)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159496 Numerator[Table[HermiteH[n,4/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159496 (PARI) a(n)=numerator(polhermite(n,4/13)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159496 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(8/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018 %Y A159496 Cf. A159280, A159488. %K A159496 sign,frac %O A159496 0,2 %A A159496 _N. J. A. Sloane_, Nov 12 2009