This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159497 #12 Sep 08 2022 08:45:43 %S A159497 1,10,-238,-9140,149932,13856600,-114819080,-29249375600,-20831812720, %T A159497 78881993495200,852190309246240,-258099234921313600, %U A159497 -5749435918990656320,989356137650941398400,35156582804554357854080,-4330067415318711118688000,-221544548972277705507065600 %N A159497 Numerator of Hermite(n, 5/13). %H A159497 G. C. Greubel, <a href="/A159497/b159497.txt">Table of n, a(n) for n = 0..422</a> %F A159497 From _G. C. Greubel_, Jun 12 2018: (Start) %F A159497 a(n) = 13^n * Hermite(n,5/13). %F A159497 E.g.f.: exp(10*x-169*x^2). %F A159497 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(10/13)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159497 Numerator[Table[HermiteH[n,5/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159497 (PARI) a(n)=numerator(polhermite(n,5/13)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159497 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(10/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018 %Y A159497 Cf. A159280, A159488. %K A159497 sign,frac %O A159497 0,2 %A A159497 _N. J. A. Sloane_, Nov 12 2009