cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A159498 Numerator of Hermite(n, 6/13).

This page as a plain text file.
%I A159498 #12 Sep 08 2022 08:45:43
%S A159498 1,12,-194,-10440,71436,14972112,58938504,-29656181088,-495322673520,
%T A159498 74246441579712,2397728871804384,-222180226077773952,
%U A159498 -11580918658301987136,762191973071827303680,60032860261440859119744,-2886298093438596491576832,-339002178646768313636024064
%N A159498 Numerator of Hermite(n, 6/13).
%H A159498 G. C. Greubel, <a href="/A159498/b159498.txt">Table of n, a(n) for n = 0..422</a>
%F A159498 From _G. C. Greubel_, Jun 12 2018: (Start)
%F A159498 a(n) = 13^n * Hermite(n,6/13).
%F A159498 E.g.f.: exp(12*x-169*x^2).
%F A159498 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(12/13)^(n-2*k)/(k!*(n-2*k)!)). (End)
%t A159498 Numerator[Table[HermiteH[n,6/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *)
%o A159498 (PARI) a(n)=numerator(polhermite(n,6/13)) \\ _Charles R Greathouse IV_, Jan 29 2016
%o A159498 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(12/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018
%Y A159498 Cf. A159280, A159488.
%K A159498 sign,frac
%O A159498 0,2
%A A159498 _N. J. A. Sloane_, Nov 12 2009