This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A159500 #12 Sep 08 2022 08:45:43 %S A159500 1,14,-142,-11452,-16340,15254344,241175416,-27559353808, %T A159500 -956451987568,61130164870880,3765349254374176,-153905067702335936, %U A159500 -16154239475595889472,398079601942332103808,76554842682960987793280,-811944878829661686113536,-399500280706227471717519104 %N A159500 Numerator of Hermite(n, 7/13). %H A159500 G. C. Greubel, <a href="/A159500/b159500.txt">Table of n, a(n) for n = 0..422</a> %F A159500 From _G. C. Greubel_, Jun 12 2018: (Start) %F A159500 a(n) = 13^n * Hermite(n,7/13). %F A159500 E.g.f.: exp(14*x-169*x^2). %F A159500 a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(14/31)^(n-2*k)/(k!*(n-2*k)!)). (End) %t A159500 Numerator[Table[HermiteH[n,7/13],{n,0,50}]] (* _Vladimir Joseph Stephan Orlovsky_, Apr 14 2011 *) %o A159500 (PARI) a(n)=numerator(polhermite(n,7/13)) \\ _Charles R Greathouse IV_, Jan 29 2016 %o A159500 (Magma) [Numerator((&+[(-1)^k*Factorial(n)*(14/13)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // _G. C. Greubel_, Jun 12 2018 %Y A159500 Cf. A159280, A159488. %K A159500 sign,frac %O A159500 0,2 %A A159500 _N. J. A. Sloane_, Nov 12 2009